Multiscale entropy analysis of biological signals: a fundamental bi-scaling law
نویسندگان
چکیده
Since introduced in early 2000, multiscale entropy (MSE) has found many applications in biosignal analysis, and been extended to multivariate MSE. So far, however, no analytic results for MSE or multivariate MSE have been reported. This has severely limited our basic understanding of MSE. For example, it has not been studied whether MSE estimated using default parameter values and short data set is meaningful or not. Nor is it known whether MSE has any relation with other complexity measures, such as the Hurst parameter, which characterizes the correlation structure of the data. To overcome this limitation, and more importantly, to guide more fruitful applications of MSE in various areas of life sciences, we derive a fundamental bi-scaling law for fractal time series, one for the scale in phase space, the other for the block size used for smoothing. We illustrate the usefulness of the approach by examining two types of physiological data. One is heart rate variability (HRV) data, for the purpose of distinguishing healthy subjects from patients with congestive heart failure, a life-threatening condition. The other is electroencephalogram (EEG) data, for the purpose of distinguishing epileptic seizure EEG from normal healthy EEG.
منابع مشابه
Scaling of entanglement entropy in the (branching) multiscale entanglement renormalization ansatz
We investigate the scaling of entanglement entropy in both the multiscale entanglement renormalization ansatz (MERA) and in its generalization, the branching MERA. We provide analytical upper bounds for this scaling, which take the general form of a boundary law with various types of multiplicative corrections, including power-law corrections all the way to a bulk law. For several cases of inte...
متن کاملEntropy measures for biological signal analyses
Entropies are among the most popular and promising complexity measures for biological signal analyses. Various types of entropy measures exist, including Shannon entropy, Kolmogorov entropy, approximate entropy (ApEn), sample entropy (SampEn), multiscale entropy (MSE), and so on. A fundamental question is which entropy should be chosen for a specific biological application. To solve this issue,...
متن کاملTime-Shift Multiscale Entropy Analysis of Physiological Signals
Abstract: Measures of predictability in physiological signals using entropy measures have been widely applied in many areas of research. Multiscale entropy expresses different levels of either approximate entropy or sample entropy by means of multiple factors for generating multiple time series, enabling the capture of more useful information than using a scalar value produced by the two entrop...
متن کاملAssessing the Effects of Alzheimer’s disease on EEG Signals Using the Entropy Measure: a Meta-Analysis
Introduction and Aims: Alzheimer’s disease is the most prevalent neurodegenerative disorder and a type of dementia. 80% of dementia in older adults is because of Alzheimer’s disease. According to multiple research articles, Alzheimer's has several changes in EEG signals such as slowing of rhythms, reduction in complexity and reduction in functional associations, and disordered functional commun...
متن کاملMultiscale entropy of laser Doppler flowmetry signals in healthy human subjects.
PURPOSE The cardiovascular system (CVS) regulation can be studied from a central viewpoint, through heart rate variability (HRV) data, and from a peripheral viewpoint, through laser Doppler flowmetry (LDF) signals. Both the central and peripheral CVSs are regulated by several interacting mechanisms, each having its own temporal scale. The central CVS has been the subject of many multiscale stud...
متن کامل